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Abstract
A reversible Markov process as a chemical polymerization model which permits
the coagulation and fragmentation reactions is considered. We present a
necessary and sufficient condition for the occurrence of a gelation in the process.
We show that a gelation transition may or may not occur, depending on the
value of the fragmentation strength, and, in the case that gelation takes place,
a critical value for the occurrence of the gelation and the mass of the gel can
be determined by close forms.

PACS numbers: 82.35.Jk, 02.50.Ga, 82.70.Gg

1. Introduction

For systems of interacting polymers evolving through the irreversible aggregation reaction

(j) + (k)
R(j,k)→ (j + k)

whereby polymers of lengths j and k link themselves together to form a polymer of length j + k

(the number R(j, k) denotes the corresponding reaction rate), the standard approach is through
Smoluchlovski’s coagulation equations to describe the coupled evolution of the densities cj (t)

of polymers made up of j units (j = 1, 2, 3, . . .) in an infinite-volume homogeneous system
[5, 49]:

C ′
j (t) = 1

2

∑
i+k=j

K(i, k)Ci(t)Cj (t) − Cj (t)

∞∑
l=1

K(j, l)Cl(t).

An alternative approach allowing a more detailed description has been pioneered by Marcus
[29] and studied in detail by Lushnikov [27], which is the stochastic counterpart of
Smoluchlovski’s coagulation equations, namely the Marcus–Lushnikov coagulation model
or process.

The connection between the two models is as follows: let N1(t),N2(t), . . . , NN (t) be
the random variables denoting the numbers of monomers, dimers, . . . , N-mers at time t,
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respectively, in the Marcus–Lushnikov process, then the expected values (1/V )E[Nj(t)]
should coincide in the thermodynamic limit N → ∞, V → ∞ and N/V = ρ with the
densities cj (t) of Smoluchlovski’s model (see [21]). Various aspects of the two models
have been extensively studied by many authors (see [3, 5, 8, 12, 15, 19, 21, 25, 27, 29–30,
42–46]). Recently, rigorous mathematics was brought to bear on the two models making the
cooperation between mathematics and physics more fruitful. For readers who are interested
in the mathematical aspects of the models, we recommend the survey paper of Aldous [1].

Perhaps what makes the two models both interesting and difficult is the possible occurrence
of a gelation, the density dropping phenomenon,within a finite time. In Smoluchlovski’s model
this manifests by an apparent lack of conservation of the density of units:

∞∑
j=1

jcj (t) <

∞∑
j=1

jcj (0) (1)

for t > tc,where tc is the critical time of gelation transition. This density dropping phenomenon
seems to contradict the fact that particles are neither created nor destroyed,but the contradiction
is resolved once one realizes that the left-hand side of (1) represents only the contribution of all
polymers of finite length to the total density of units. This is also interpreted as an indication of
the formation of gel, or an infinite size cluster (see [7, 9, 20, 24, 26, 34, 39, 47–49]). Gelation
in the case R(j, k) = jk is known to be equivalent to the emergence of a giant component in
the random graph theory, a result which was initiated by Erdös and Rényi [13] and extensively
studied by many authors [2, 6, 22, 31–32].

For Smoluchlovski’s model the kinetic theory of polymerization does not contain the
equilibrium theory of Flory [14] and Stockmayer [37] as a limiting case for large values of
time, due to the absence of fragmentation effects. In fact, as clusters grow in size, break-up
processes become more important, and the irreversible coagulation reaction should be replaced
by a coagulation–fragmentation reaction. Van Dongen and Ernst [40, 41] and Spouge [36]
were the first to extend Smoluchlovski’s coagulation equations by including the fragmentation
reaction. Since then, many studies of the kinetic equations and their stochastic counterparts
containing the combined effects of coagulation and fragmentation have been done (see [4, 10,
11, 16–18, 23, 36, 40–41, 44]).

Although there are many studies devoted to the deterministic and stochastic models based
on the coagulation–fragmentation reaction of polymerization, the kinetic model of reversible
polymerization proposed by Van Dongen and Ernst [41] and its stochastic counterpart
have received minimal attention. It is worthwhile to study the kinetic model of reversible
polymerization in order to predict the occurrence of a gelation transition, depending on the
value of the fragmentation strength, in the equilibrium theory of Flory and Stockmayer.

This paper investigates the gelation problem in a stochastic counterpart of the kinetic
model of reversible polymerization. The main objective of this paper is to present a necessary
and sufficient condition for the occurrence of a gelation. Section 2 gives the description of
a reversible Markov process of polymerization considered in the paper. A necessary and
sufficient condition for the occurrence of a gelation is proved in section 3. Some applications,
including two examples and a proposition, are contained in section 4. The paper concludes in
section 5, with some discussions on the gelation.

2. A reversible Markov process of polymerization

As in [8, 41], we restrict our discussion to homogeneous systems of polymers where diffusion
effects are ignored. We also assume that intramolecular reactions do not occur, and therefore
only branched-chain (non-cyclic) polymers are formed and all unreacted functional groups are
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equally reactive. A state of a finite homogeneous system of polymers of lengths 1, 2, 3, . . . , N

in the volume V is described by a vector n = (n1, n2, . . . , nk, . . . , nN), the kth component of
which is the number of k-mers. Now define, as in [17], a Markov process of polymerization
as follows: the process, denoted by {MN(t), t � 0}, is a continuous-time Markov process on
the state space

�N =
{

n ∈ {0, 1, 2, . . . , N}N :
N∑

k=1

knk = N

}
(2)

with transition rates

Qn n′ =




R(k,l)

N 2 nknl n′ = n+
kl k �= l

R(k,l)

N 2 nk(nk − 1) n′ = n+
kl k = l

F (k,l)

N
nk+l n′ = n−

kl

0 otherwise

(3)

where
n+

kl = {n1, . . . , nk − 1, . . . , nl − 1, . . . , nk+l + 1, . . . , nN } if k �= l

n+
kl = {n1, . . . , nk − 2, . . . , n2k + 1, . . . , nN } if k = l

n−
kl = {n1, . . . , nk + 1, . . . , nl + 1, . . . , nk+l − 1, . . . , nN } if k �= l

n−
kl = {n1, . . . , nk + 2, . . . , n2k − 1, . . . , nN } if k = l.

In (3), R(k, l) represents the coagulation rate which describes the congelation process linking
k-mers and l-mers to form (k + l)-mers, F(k, l) represents the fragmentation rate which
describes the fragmentation process from (k + l)-mers to k-mers and l-mers, and R(k, l) and
F(k, l) satisfy the following detailed balance condition (see [41]):

R(k, l)f (k)f (l) = λF(k, l)f (k + l) (4)

where 1
λ
(λ > 0) represents the fragmentation strength and k!f (k) denotes the number of

distinct ways of forming a k-mer from k distinguishable units. Equation (4) states that the
number of distinct ways for (k + l)-mers to break up into k-mer and l-mers (λF (k, l)f (k + l))

equals the number of bonds between (k) and (l) clusters in (k + l)-mer configurations
(R(k, l)f (k)f (l)). The choice of Qn n′ reflects the fact that in the homogeneous system
(ignoring diffusion effects), reaction occurs with a probability proportional to the number of
reactants and inversely proportional to the volume; here the density is taken to be equal to 1,
so that the volume coincides with the total number of units N.

As has been shown in [17] the Markov process {MN(t), t � 0} is a reversible Markov
chain and has a unique stationary distribution:

PN(n) = 1

πN

∏
k�1

[
N
λ
f (k)

]nk

nk!
n ∈ �N (5)

where

πN = πN

(
N

λ

)
=
∑
n∈�N

∏
k�1

[
N
λ
f (k)

]nk

nk!
. (6)

π(N) is usually called the partition function of the process. It has an integral formula

πN = πN

(
N

λ

)
= 1

2π i

∫
�

exp

{
N

λ
F(x) − N log x

}
x−1 dx (7)

where � denotes a contour surrounding the origin x = 0 and the series F(x)
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F(x) =
∞∑

k=1

f (k)xk (8)

has a positive radius, r, of convergence, that is F(x) < ∞ for 0 � x < r.

3. A necessary and sufficient condition for gelation

In this section we first give a definition of a gelation in the reversible Markov process of
polymerization.

Definition 1. Let Nk be a random number of k-mers and E(·) denote the expectation
corresponding to the stationary probability distribution PN(·) in (5). We say that there is
a gelation in the reversible polymerization process, or the reversible polymerization process
has a gelation, if and only if there is a critical value λc > 0 such that

lim
N→∞

1

N

N∑
k=1

kE(Nk) = 1 (9)

for λ � λc and

lim
N→∞

1

N

N∑
k=1

kE(Nk) < 1 (10)

for λ > λc.

Note that the definition above is the same as usually used in physical literature. Other
definitions of gelation can be found in [1, 7, 23]. If we denote the mass of the sol and gel by
S(λ) and G(λ), respectively, then

S(λ) + G(λ) = 1

and

G(λ) = 1 − S(λ) = 1 − lim
N→∞

1

N

N∑
k=1

kE(Nk). (11)

Thus, G(∞) = limλ→∞G(λ) can be defined as the maximum mass of the gel.

Theorem 1. If there exists a gelation in the reversible polymerization process, then

F ′(r) < ∞ F ′′(r) = ∞ (12)

and the critical value λc satisfies

λc � rF ′(r). (13)

Proof. Let F ′(r) = ∞. Then, for any λ > λc we can choose r0 < r such that r0F
′(r0) = λ.

It follows from (5) and (6) that

E(Nk) =
∑
n∈�N

nkPN(n)

= Nf (k)

λπN

∑
n∈�N

[
N
λ
f (k)

]nk−1

(nk − 1)!

N∏
j �=k

[
N
λ
f (j)

]nj

nj !

= Nf (k)

λπN

∑
n∈�N−k

N−k∏
j=1

[
N
λ
f (j)

]nj

nj !

= Nf (k)

λ

πN−k

(
N
λ

)
πN

(
N
λ

) . (14)
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By (7) and (8) we have

πN = πN

(
N

λ

)
= 1

2π i

∫
�

exp

{
N

λ
F(x) − N log x

}
x−1 dx

where � is a contour with its radius equal to r0 surrounding the origin x = 0. Let
DN(x) = N

λ
F (x) − N log x, then D′

N(r0) = 0. Obviously, the root r0 is unique in [0, r),
since xF ′(x) is a strictly monotone increasing function on [0, r). Such a root is a saddle point
of eDN (x). By a standard saddle-point-type argument (see [33], p 96) we can obtain

πN

(
N

λ

)
= (1 + o(1))

1√
2πA(r0)N

exp

{
N

λ
F(r0) − N log r0

}
where

A(r0) = r2
0 F ′′(r0) + r0F

′(r0)

r0F ′(r0)
.

Note that ∫ +∞

−∞
exp{ibx − a2x2} dx =

√
π

a
exp

{
− b2

4a2

}
(15)

where a > 0 and i = √−1. Thus, we also have

πN−k

(
N

λ

)
= (1 + o(1))

rk
0√

2πA(r0)N
exp

{
− k2

2A(r0)N

}
exp

{
N

λ
F(r0) − N log r0

}
.

Substituting the above two formulae into (14), immediately yields

E(Nk) = Nf (k)

λ

πN−k

(
N
λ

)
πN

(
N
λ

) = (1 + o(1))
Nf (k)

λ
rk

0 exp

{
− k2

2A(r0)N

}

and therefore

1

N

N∑
k=1

kE(Nk) = (1 + o(1))
1

λ

N∑
k=1

kf (k)rk
0 exp

{
− k2

2A(r0)N

}
.

Note that 1
N

∑N
k=1 kE(Nk) � 1 and r0F

′(r0) = λ. For any small ε > 0 we can choose two
large numbers n0 and n1 with n0 < n1 such that

(1 + o(1))
1

λ

n0∑
k=1

kf (k)rk
0 exp

{
− k2

2A(r0)N

}
> 1 − ε

for N > n1. Thus

1

N

N∑
k=1

kE(Nk) → 1

as N → ∞. This is a contradiction to the definition of a gelation. That is, the number F ′(r)
satisfies F ′(r) < ∞.

If λc < rF ′(r), then we can choose two numbers λ1 and r1 such that λc < λ1 < rF ′(r)
and λ1 = r1F

′(r1). Note that r1 < r. By the same method used above we can obtain
1
N

∑N
k=1 kE(Nk) → 1 for λc < λ1. This is a contradiction to (10). Thus, we have λc � rF ′(r).

Assume now that F ′′(r) < ∞. Let x = r eiθ ,−π � θ � π. Then we have the following
Taylor series near x = r:

F(r eiθ ) = F(r) + rF ′(r)(eiθ − 1) + 1
2 r2F ′′(r)(eiθ − 1)2 + o(θ2)

= F(r) + irF ′(r)θ − 1
2 [rF ′(r) + r2F ′′(r)]θ2 + o(θ2).
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It follows that

πN = 1

2π i

∫
©

exp

{
N

λ
F(x) − N log x

}
x−1 dx

= 1

2π

∫ π

−π

exp

{
N

λ
F(r eiθ ) − N log r eiθ

}
dθ

= DN(r)

2π

∫ π

−π

exp

{
−i

[
1 − rF ′(r)

λ

]
Nθ − rF ′(r)A(r)

2λ
Nθ2 + o(θ2)

}
dθ

= DN(r)

2π
√

N

∫ π
√

N

−π
√

N

exp

{
−i

[
1 − rF ′(r)

λ

]√
Nt − rF ′(r)A(r)

2λ
t2 + o

(
t2

N

)}
dt

where © is a contour with its radius equal to r. By (15) we have

πN

(
N

λ

)
= (1 + o(1))

√
λDN(r)√

2πrF ′(r)A(r)
exp

{
− N

[
1 − rF ′(r)

λ

]2
2rF ′(r)A(r)/λ

}
.

Similarly,

πN−k

(
N

λ

)
= (1 + o(1))

√
λDN(r)rk

√
2πrF ′(r)A(r)

exp

{
−N

[
1 − rF ′(r)

λ
− k

N

]2
2rF ′(r)A(r)/λ

}
.

Then

πN−k

(
N
λ

)
πN

(
N
λ

) = (1 + o(1))rk exp

{
k
[
2
(
1 − rF ′(r)

λ

)− k
N

]
2rF ′(r)A(r)/λ

}
.

Choose λ > 2rF ′(r) such that

2
(
1 − rF ′(r)

λ

)− k
N

2rF ′(r)A(r)/λ
�

1 − 2rF ′(r)
λ

2rF ′(r)A(r)/λ
= dλ > 0.

Thus

1 � 1

N

N∑
k=1

kE(Nk) = (1 + o(1))
1

λ

N∑
k=1

kf (k)rk exp

{
k
[
2
(
1 − rF ′(r)

λ

)− k
N

]
2rF ′(r)A(r)/λ

}

� (1 + o(1))
1

λ

N∑
k=1

kf (k)(r edλ)k.

Obviously,

1

λ

N∑
k=1

kf (k)(r edλ)k → ∞

as N → ∞, since r is the radius of convergence for the series F ′(x). It is contradictory to
1
N

∑N
k=1 kE(Nk) � 1 for every N � 1. This means that F ′′(r) = ∞. �

Next, we prove a lemma which is a slightly modified one given by Leyvraz [25].

Lemma 1. Let the aj be positive numbers such that

F(z) =
∞∑

j=1

ajz
j

has convergence radius 1. Define Sk =∑k
j=1 aj . If there exists a positive number λ such that

Sk ∼ kλ (k → ∞)
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then

F(z) ∼ (1 − z)−λ (z → 1).

where x ∼ y means that x/y → 1.

Proof. Since kλ ∼ ∣∣(−λ−1
k

)∣∣, we can choose M so large that

∞∑
j=1

ajz
j = (1 − z)

M−1∑
j=1

Sj z
j + (1 − z)

∞∑
j=M

Sjz
j

= (1 − z)

M−1∑
j=1

Sj z
j + (1 + o(1))(1 − z)

∞∑
j=M

∣∣∣∣
(−λ − 1

k

)∣∣∣∣ zj

= (1 − z)

M−1∑
j=1

Sj z
j + (1 + o(1))(1 − z)


(1 − z)−λ−1 +

M−1∑
j=1

∣∣∣∣
(−λ − 1

k

)∣∣∣∣ zj


 .

From this it follows that

(1 − z)λF (z) → 1

as z → 1. �

We now mention our main results in the following theorem.

Theorem 2. Let f (k) = ckr
−kk−β, where ck > 0 and ck → c > 0 as k → ∞. Then a

necessary and sufficient condition for the occurrence of a gelation in the process is that the
number β satisfies

2 < β < 3. (16)

Moreover, the critical value λc of gelation satisfies λc = rF ′(r) and

S(λ) = lim
N→∞

1

N

N∑
k=1

kE(Nk) = 1

for λ � λc and

S(λ) = lim
N→∞

1

N

N∑
k=1

kE(Nk) = λc

λ
+

[
1 − λc

λ

]
(3 − β)�(3 − β) < 1 (17)

for λ > λc.

Proof. Sufficiency. Since rF ′(r) = ∑∞
k=1 ckkk−β < ∞ for 2 < β < 3, for any λ < rF ′(r)

we can choose a number r0 such that r0F
′(r0) = λ. By the same method used for proving

theorem 1 we can prove that 1
N

∑N
k=1 kE(Nk) → 1 for 2 < β � 3 and λ < rF ′(r) as N → ∞.

Let λ � rF ′(r). It follows from lemma 1 that

F ′′(x) ∼ r−(β−1)c

(3 − β)
(r − x)−(3−β) (x → r)

since
∑j

k=1 ckk
2−β ∼ cj 3−β/(3 − β) as j → ∞. Let

B(x) = F(x) − F(r) − F ′(r)(x − r)

F ′′(x)(r − x)2/2
.

It can be checked that, as x → r,

B(x) → 2

(β − 1)(β − 2)
.
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Hence

F(r eiθ ) − F(r) = F ′(r)(r eiθ − r) +
1

2
B(r eiθ )F ′′(r eiθ )(r − r eiθ )2

= irF ′(r)θ +
c

(β − 1)(β − 2)(3 − β)
(−iθ)β−1 + o((θ)β−1).

Let α = β − 1, b = 1 − rF ′(r)/λ and

γ = c

(β − 1)(β − 2)(3 − β)
.

Since e±iπ = −1 and e−iπ/2 = −i , we have

F(r eiθ ) − F(r) = irF ′(r)θ − γ |θ |α exp

{
−i

(α − 2)π

2
sign(θ)

}
+ o(|θ |α) (18)

where sign(θ) = 1 for θ > 0, sign(θ) = −1 for θ < 0 and sign(θ) = 0 for θ = 0. It follows
from (7) and (18) that

πN

(
N

λ

)
= 1

2π i

∫
�

exp

{
N

λ
F(x) − N log x

}
x−1 dx

= DN(r)

2π

∫ π

−π

exp

{
−ibNθ− γ

λ
N |θ |α exp

{
−i

(α − 2)π

2
sign(θ)

}
+ o(N |θ |α)

}
dθ

= DN(r)

2π(γN/λ)1/α

∫ π(γN/λ)1/α

−π(γN/λ)1/α

exp

{
−ib

N(α−1)/α

(γ /λ)1/α
t

− |t|α exp

{
−i

(α − 2)π

2
sign(t)

}
+ o(|t|)

}
dt .

Comparing this with the stable density q(x; α, δ), where δ = α − 2 (see [38], p 131), we have

πN

(
N

λ

)
= (1 + o(1))

DN(r)

(γN/λ)1/α
q(0; α, α − 2)

for λ = rF ′(r), i.e. b = 0, and

πN

(
N

λ

)
= (1 + o(1))

γDN(r)

λNα
b−(α+1)q(0; 1/α, (2α − 3)/α)

for λ > rF ′(r), since q(x; α, δ) = x−1−αq(x−α; 1/α, 1 + (δ − 1)/α). Let lN = bN −
N1/α log N,LN = bN + N1/α log N and

xk,N =
[
b − k

N

]
N(α−1)/α

(γ /λ)1/α
.

Similarly, we have

πN−k

(
N

λ

)
= (1 + o(1))

DN(r)rk

(γN/λ)1/α
q(−k(γN/λ)−1/α; α, α − 2)

for λ = rF ′(r),

πN−k

(
N

λ

)
= (1 + o(1))

γDN(r)rk

λNα

[
b − k

N

]−(α+1)

q(0; 1/α, (2α − 3)/α)

for λ > rF ′(r) and k < lN ,

πN−k

(
N

λ

)
= (1 + o(1))

DN(r)rk

(γN/λ)1/α
q(xk,N ; α, α − 2)
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for λ > rF ′(r) and lN � k � LN, and

πN−k

(
N

λ

)
= (1 + o(1))

γDN(r)rk

λNα

[
k

N
− b

]−(α+1)

q(0; 1/α,−(2α − 3)/α)

for λ > rF ′(r) and LN < k � N. Note that q(x; α, δ) = q(−x; α,−δ),

q(0; α, α − 2) = π−1�(1 + 1/α) cos

[
(α − 2)π

2α

]
> 0

q(0; 1/α,±(2α − 3)/α) = π−1�(1 + α) cos

[
(2α − 3)π

2

]
= π−1�(1 + α) sin[(α − 1)π] > 0 (19)

and for any x, there exists a constant M > 0 (only depending on α) such that

q(x; α, α − 2) � M

Thus, for λ = rF ′(r),

1

N

N∑
k=1

kE(Nk) =
N∑

k=1

kf (k)

λ

πN−k

(
N
λ

)
πN

(
N
λ

)
= (1 + o(1))

1

λ

N∑
k=1

kf (k)rk q(−k(γN/λ)−1/α; α, α − 2)

q(0; α, α − 2)
→ 1

as N → ∞. For λ > rF ′(r) we have

1

N

N∑
k=1

kE(Nk) = (1 + o(1))
bα+1

λ

N/ log N∑
k=1

kf (k)rk 1[
b − k

N

]α+1

+ (1 + o(1))
bα+1

λ

lN−1∑
k>N/ log N

kf (k)rk 1[
b − k

N

]α+1

+ (1 + o(1))
bα+1Nα− 1

α

λ(γ /λ)
α+1
α

LN∑
k=lN

kf (k)rk q(xk,N ; α, α − 2)

q(0; 1/α, (2α − 3)/α)

× (1 + o(1))
bα+1

λ

N∑
k>LN

kf (k)rk 1[
k
N

− b
]α+1

→ rF ′(r)
λ

+

[
1 − rF ′(r)

λ

]
(3 − β)�(3 − β).

Obviously,

1

λ

N/ log N∑
k=1

kf (k)rk bα+1[
b − k

N

]α+1 → rF ′(r)
λ

as N → ∞. Furthermore,
lN −1∑

k>N/ log N

kf (k)rk 1[
b − k

N

]α+1 =
lN−1∑

k>N/ log N

ck

kα
[
b − k

N

]α+1

= (1 + o(1))cN−(α−1)

∫ b−N−(1−1/α) log N

1/ log N

dx

xα(b − x)α+1
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= (1 + o(1))cN−(α−1)

∫ b/2

1/ log N

dx

xα(b − x)α+1

+ (1 + o(1))cN−(α−1)

∫ b−N−(1−1/α) log N

b/2

dx

xα(b − x)α+1

→ 0

and
N∑

k>LN

kf (k)rk 1[
k
N

− b
]α+1 = (1 + o(1))cN−(α−1)

∫ 1

b+N−(1−1/α) log N

dx

xα(x − b)α+1
→ 0

as N → ∞. Since �(s + 1) = s�(s), �(s)�(1 − s) = π/sin(sπ) for 0 < s < 1 and

bα+1Nα− 1
α

λ(γ /λ)
α+1
α

LN∑
k=lN

kf (k)rkq(xk,N ; α, α − 2)

= (1 + o(1))
cbα+1N1− 1

α

λ(γ /λ)
α+1
α

∫ b+N−(1−1/α) log N

b−N−(1−1/α) log N

q(xk,N ; α, α − 2)

xα
dx

= (1 + o(1))
cbN1− 1

α

λ(γ /λ)
α+1
α

∫ b

b−N−(1−1/α) log N

q(xk,N ; α, α − 2) dx

+ (1 + o(1))
cbN1− 1

α

λ(γ /λ)
α+1
α

∫ b+N−(1−1/α) log N

b

q(xk,N ; α, α − 2) dx

= (1 + o(1))
cb

γ

∫ log N

− log N

q(xk,N ; α, α − 2) d(xk,N)

→ b(β − 1)(β − 2)(3 − β)

as N → ∞, it follows from (19) that

bα+1Nα− 1
α

λ(γ /λ)
α+1
α

LN∑
k=lN

kf (k)rk q(xk,N; α, α − 2)

q(0; 1/α, (2α − 3)/α)
→ b(3 − β)�(3 − β).

Thus,

lim
N→∞

1

N

N∑
k=1

kE(Nk) = rF ′(r)
λ

+

[
1 − rF ′(r)

λ

]
(3 − β)�(3 − β) < 1

for λ > rF ′(r), since (3 − β)�(3 − β) < 1 for 2 < β < 3. This also shows that λc = rF ′(r).
Necessary. Assume that there exists a gelation in the process. Since rF ′(r) =∑∞

k=1 ckkk−β, it follows from theorem 1 that 2 < β � 3. Let β = 3 and λ > λc. Note that
λc � rF ′(r) and

∑j

k=1 ck ∼ cj as j → ∞. By lemma 1 we know that F ′′′(x) ∼ cr−2(r−x)−1

(x → r), and therefore F ′′(x) ∼ −cr−2 log(r − x) (x ↗ r). Moreover, taking x = r eiθ we
have F ′′(r eiθ ) ∼ 2cr−2|log|θ/

√
2‖ (θ → 0). Let

B(x) = F(x) − F(r) − F ′(r)(x − r)

F ′′(x)(x − r)2/2
.

It can be checked that B(r eiθ ) ∼ (1 + O(|log|θ‖)−1) (θ → 0). Hence

F(r eiθ ) − F(r) = F ′(r)(r eiθ − r) + 1
2B(r eiθ )F ′′(r eiθ )(r eiθ − r)2

= irF ′(r)θ − c|log|θ‖θ2 + O(θ2).
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It follows from (7) and (15) that

πN

(
N

λ

)
= 1

2π i

∫
�

exp

{
N

λ
F(x) − N log x

}
x−1 dx

= DN(r)

2π

∫ π

−π

exp

{
−ibNθ − c|log|θ‖

λ
Nθ2 + O(θ2)

}
dθ

= DN(r)

2π

√
N log

√
N

∫ π
√

N log π

−π
√

N log π

exp


−ib

√
N√

log
√

N

t

− c

λ
t2 + O

(
log|t|

log
√

N
+

t2

N

)

(

1 + O

(
log |t|

log
√

N

))
dt

= (1 + o(1))

√
λDN(r)

2
√

πc
exp

{
−

N

log
√

N
b2

4c/λ

}
.

Similarly,

πN−k

(
N

λ

)
= (1 + o(1))

√
λDN(r)

2
√

πc
rk exp


−

N

log
√

N

[
b − k

N

]2
4c/λ


 .

Hence, for λ > λc � rF ′(r),

1 � 1

N

N∑
k=1

kE(Nk) =
N∑

k=1

kf (k)

λ

πN−k

(
N
λ

)
πN

(
N
λ

)
= (1 + o(1))

1

λ

N∑
k=1

kf (k)rk exp

{
k
(
2b − k

N

)
4(c/λ) log

√
N

}

>
c

λN

(
5b

3

)−2 ∫ 5b/3

4b/3
exp

{
Nx(2b − x)

4(c/λ) log
√

N

}
dx

=
c exp

{
Nb2

4(c/λ) log
√

N

}
λN

∫ 5b/3

4b/3
exp

{
− N(x − b)2

4(c/λ) log
√

N

}
dx

>
c exp

{
5Nb2

36(c/λ) log
√

N

}
λN

→ +∞
as N → ∞. The contradiction means that β �= 3, i.e. β < 3. If λc > rF ′(r), then we can
choose λ1 such that λc > λ1 > rF ′(r). By (17) we know

lim
N→∞

1

N

N∑
k=1

kE(Nk) = λc

λ1
+

[
1 − λc

λ1

]
(3 − β)�(3 − β) < 1.

This contradict the definition of critical value of gelation. That is, we have λc = rF ′(r). �

Remark 1. For λ > λc, we have

G(λ) = 1 − S(λ) = 1 − lim
N→∞

1

N

N∑
k=1

kE(Nk)

=
[

1 − rF ′(r)
λ

]
[1 − (3 − β)�(3 − β)].
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Moreover, the function S(λ) is continuous on [0,∞) and M ′(λ) is discontinuous at λ = λc.
In particular, G(∞) = limλ→∞G(λ) = 1 − (3 − β)�(3 − β), which is the maximum mass of
the gel and only depends on β.

Remark 2. With no rigorous argument we can see from (17) that there is no gelation when
β = 2 or β = 3 since �(1) = 1 and limβ→3(3 − β)�(3 − β) = 1.

4. Applications

In this section we show two examples and a proposition.

Example 1. RAa model (a � 3).

The numbers f (k) for the RAa model have already been calculated by Stockmayer:

f (k) = ak[(a − 1)k]!

k![(a − 2)k + 2]!
.

Since the coagulation coefficients

R(i, j) = [(a − 2)i + 2][(a − 2)j + 2]

the fragmentation coefficients F(i, j) can be taken as in Van Dongen and Ernst [41]:∑
i+j=k

F (i, j) = 2

λ
(k − 1).

Hence

2(k − 1)f (k) =
∑

i+j=k

R(i, j)f (i)f (j).

We can calculate (see [17]) that β = 5/2, ck →
√

(a − 1)/[2π(a − 2)5],

r = lim
k→∞

f (k)

f (k + 1)
= (a − 2)(a−2)

a(a − 1)(a−1)

and λc = rF ′(r) = (a − 1)/[a(a − 2)2]. Thus the mass of gelation for λ > λc is

G(λ) =
[

1 − (a − 1)

λa(a − 2)2

] [
1 −

√
π

2

]

and the maximum mass of gelation is G(∞) = 1 −
√

π

2 .

Example 2. RA∞ model.

For the RA∞ model we have f (k) = kk−2/k! and Rij = ij. It can be checked (see [17]) that
β = 5/2, r = e−1, ck → 1/

√
2π and λc = rF ′(r) = 1. Thus

G(λ) =
[

1 − 1

λ

] [
1 −

√
π

2

]

for λ > λc and G(∞) = 1 −
√

π

2 .

To model surface interactions, the coagulation and fragmentation coefficients can be
taken as

R(i, j) = iσ jσ
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and ∑
i+j=k

F (i, j) = 2

λ
(k − 1)σ (20)

where σ � 0. Note that kσ − 1 proposed by van Dongen and Ernst [41] has been replaced by
(k − 1)σ . When σ = 1, the model has been well studied by van Dongen and Ernst [41].

Assume that the positive numbers f (k) satisfy (4), and therefore

2(k − 1)σf (k) =
∑

i+j=k

iσ jσ f (i)f (j). (21)

We now present a proposition in the following.

Proposition 1. If the numbers f (k) satisfy (21) and their convergence radius r is positive,
then a necessary and sufficient condition for the occurrence of a gelation is

1
2 < σ < 3

2 (22)

and
∞∑

k=1

k1+σf (k)rk = ∞. (23)

Moreover, the critical value of the gelation satisfies λc = rF ′(r) and

G(λ) =
[

1 − λc

λ

] [
1 −

(
3

2
− σ

)
�

(
3

2
− σ

)]
(24)

for λ > λc and 1
2 < σ < 3

2 .

Proof. Let fσ (k) = kσ−1f (k), Fσ (x) = ∑∞
k=1 fσ (k)xk, U(x) = xF ′

σ (x) and V (x) =∑∞
k=1[1 − (1 − 1/k)σ ]kfσ (k)xk. It follows from (21) that

2U(x) − 2V (x) = [U(x)]2

for 0 � x < r , and therefore

U(x) = 1 ±
√

1 − 2V (x).

Obviously, V (r) = limx→r V (x) � 1/2 and U(r) = limx→r U(x) < ∞. Furthermore, we
have U(n)(r) < ∞ if and only if V (n+1)(r) < ∞, and in particular

0 < lim
x→r

V ′′(x)

U ′(x)
= V ′′(r)

U ′(r)
< ∞ (25)

since [1 − (1 − 1/k)σ ] = σ/k + o(1/k). Note that U ′(x) > 0 and V ′(x) > 0 for 0 � x < r .
It follows that

U ′(x) = V ′(x)√
1 − 2V (x)

(26)

for 0 � x < r.

Let the process have a gelation. We prove that U ′(r) = limx→r U ′(x) = ∞, that is, (23)
holds. If U ′(r) < ∞, then 1 − 2V (r) > 0, V ′′(r) < ∞. From (26) it follows that

U ′′(r) = V ′′(r)(1 − 2V (r)) + (V ′(r))2

(1 − 2V (r))
√

1 − 2V (r)
< ∞. (27)

From U ′′(r) we know V (3)(r) < ∞. Repeating the calculation for U(n)(r) we can obtain
U(n)(r) < ∞ for every n � 0. Hence F ′′(r) < ∞. This contradicts the results of theorem 1.
Obviously, U ′(r) = ∞ means that 1 − 2V (r) = 0 and

∑∞
k=1 k1+σ f (k)rk = ∞.
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Since V ′(r) < ∞ and 1−2V (r) = 0, by (25), (26) and (27) we have U ′(r)
√

1 − 2V (r) <

∞, U ′(r)(1 − 2V (r)) = 0 and

U ′′(r)
[U ′(r)]3

= lim
x→r

U ′′(x)

[U ′(x)]3
= 1.

Let W(x) = xF ′
σ (x)−Fσ (x). Then the function y = W(x) is monotone increasing and analytic

on [0, r), and W ′(x) = xF ′′
σ (x). Furthermore, its inverse function x = w(y), 0 � y < y,

is also monotone increasing, analytic and left continuous at y = y, where y = W(r). By
Cauchy’s integral formula we have

k(k − 1)fσ (k) = (2π i)−1
∫

©
xF ′′

σ (x)x−k dx

= (2π i)−1
∫

©′
exp{−k log w(y)} dy

where © and ©′ are two contours with their radii being respectively less than r and equal to y

surrounding the origin 0. Since

w′(y) = 1

W ′(r)
= 1

U ′(r) − U(r)/r
= 0

and

w′′(y) = − W ′′(r)
[W ′(r)]3

= −U ′′(r) − U ′(r)/r + U(r)/r2

[U ′(r) − U(r)/r]3
= −1

log w(y) can be expanded in a Taylor series near y = y as follows:

log w(y) = log r − 1

2r
(y − y)2 + o((y − y)2).

Thus

k(k − 1)fσ (k) = y

2π

∫ π

−π

exp{iθ − k log w(y eiθ )} dθ

= yr−k

2π

∫ π

−π

exp

{
iθ − k

y2

2r
θ2 + O(kθ3)

}
dθ

= yr−k

2π
√

k

∫ π
√

k

−π
√

k

exp

{
it/

√
k − y2

2r
t2 + O(t3/

√
k)

}
dθ

= (1 + o(1))
( r

2π

)1/2
r−kk−1/2

and therefore

f (k) = k1−σ fσ (k) = ckr
−kk−(1+σ+1/2) (28)

where ck = (1 + o(1))k/(k−1)(r/2π)1/2 for k � 2. By theorem 2 we have 2 < 1 + σ + 1/2 <

3, i.e. 1/2 < σ < 3/2.

If (22) and (23) hold, then (28) can be obtained by the same approach. By theorem 2 we
see that the process has a gelation, λc = rF ′(r) and (24) holds. �

It is known that the expected values (1/V )E[Nj(t)] coincide in the thermodynamic limit
N → ∞, V → ∞ and N/V = ρ with the densities cj (t) of Smoluchlovski’s model. If we
have (1/V )E[Nj(t)] ∼ const × k−τ (V > k → ∞) at the critical value of the gelation, then
the exponent τ characterizes the size distribution at the gel point. Thus it is interesting to study
the asymptotic behaviour of (1/V )E[Nj(t)]. The asymptotic estimates for (1/N)E[Nj(t)]
with ρ = 1 will be given in the following proposition.
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Proposition 2. Suppose that 1/2 < σ < 3/2, the numbers f (k) satisfy (21), the convergence
radius r > 0 and

∑∞
k=1 k1+σf (k)rk = ∞. Then λc = rF ′(r) is the critical value of the

gelation and

(i) For λ < λc,

1

N
E(Nk) ∼ const × k−(1+1/2+σ ) exp{−const × k} (N > k → ∞).

(ii) For λ = λc,

1

N
E(Nk) ∼ const × k−(1+1/2+σ ) (N > k → ∞).

(iii) For λ > λc and k < lN = bN − N1/(σ+1/2) log N or k > LN = bN + N1/(σ+1/2) log N ,

1

N
E(Nk) ∼ const × k−(1+1/2+σ ) (N > k → ∞)

where b = 1 − λ/λc.
(iv) For λ > λc and MN(−C) � k � MN(C),

1

N
E(Nk) ∼ const × k

− 1+1/2+σ

1/2+σ (N > k → ∞)

where MN(C) = bN + CN1/(σ+1/2) and C is an arbitrary positive constant.

Proof. From proposition 1 we know that λc = rF ′(r) is the critical value of the gelation and
f (k) = ckr

−kk−(1+σ+1/2). Since πN

(
N
λ

)
and πN−k

(
N
λ

)
have been estimated in theorems 1 and

2 for λ < λc, λ = λc or λ > λc, by (14), i.e.

E(Nk) = Nf (k)

λ

πN−k

(
N
λ

)
πN

(
N
λ

)
we can obtain proposition 2. �

Remark 3. Without the fragmentation effects, i.e. F(k, l) = 0, the critical value of gelation
is the critical time, tc. The concentration of k-mers, ck(tc), at the gel point, has been given by
Ziff [48] as follows:

ck(tc) ∼ const × k−τ

asymptotically as k → ∞, where 5/2 − 1/d < τ < 5/2 and d denotes the dimensions.
Obviously, gelation cannot occur for d = 1. Let d � 2, then 2 < τ < 5/2. This is different
from the result (iv) in proposition 2

1

N
E(Nk) ∼ const × k−(1+1/2+σ ) (N > k → ∞)

since 2 < 1 + 1/2 + σ < 3. That is, 1 + 1/2 + σ can be greater than 5/2.

Remark 4. It should be noted that, if λ > λc, k and j satisfy respectively
|(k − bN)N−1/(σ+1/2)| = O(1) and |(j − bN)N−1/(σ+1/2)| → ∞ as N → ∞, then

1

N
E(Nk) ∼ const × k

− 1+1/2+σ

1/2+σ >
1

N
E(Nj ) ∼ const × j−(1+1/2+σ )

since (1 + 1/2 + σ) > (1 + 1/2 + σ)/(1/2 + σ). That is, the concentration of j -mers is less
than the concentration of k-mers for the above case.
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5. Summary and discussion

As can be seen, the necessary and sufficient condition for gelation in this paper is mainly
based on the assumption that f (k) is of the form ckr

−kk−β or rkf (k) = O(1/kβ). It
is known that many polymer models such as RAa,RA∞ and AaRBb are of this form.
When 2 < β < 3, rkf (k) = O(1/kα+1) corresponds to Lévy stable densities pα(x), where
α = β − 1, since Lévy stable densities are asymptotically of the form 1/xα+1. If one extends
the condition, for example, β � 3, then the definition of a gelation in (9) and (10) must be
modified.

For the coagulation rate kernelsR(j, k) = jσ kσ , there exists a gelation when 1/2 < σ � 1
and instantaneous gelation when σ > 1 in irreversible polymer model (Jeon [24]). Comparing
this with proposition 1 we see that the property of gelation in an irreversible polymer model
is different from that in the reversible polymer model especially when 1 < σ < 1 + 1/2.

From the results of this paper we can draw the conclusion that the reversible Markov
process of polymerization is more complete than the deterministic counterpart (the kinetic
model of reversible polymerization proposed by Van Dongen and Ernst [41]), in the sense that
it allows the investigation of finite-size effects and fluctuations.
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